Wednesday, December 10, 2014

QUADRATIC EQUATIONS
A QUADRATIC is a polynomial whose highest exponent is 2.
ax² + bx + c.
The coefficient of x² is called the leading coeffieient.
Question 1.  What is the standard form of a quadratic equation?
ax² + bx + c = 0.
The quadratic is on the left.  0 is on the right.

Question 2.  What do we mean by a root of a quadratic?
A solution to the quadratic equation.
For example, the roots of this quadratic --
x² + 2x − 8
-- are the solutions to
x² + 2x − 8 = 0.
To find the roots, we can factor that quadratic as
(x + 4)(x − 2).
Now, if  x = −4, then the first factor will be 0.   While if  x = 2, the second factor will be 0.  But if any factor is 0, then the entire product will be 0.  Therefore, if x = −4 or 2, then
x² + 2x − 8 = 0.
−4  and  2 are the solutions to the quadratic equation. They are theroots of that quadratic.
Conversely, if the roots are a and b say, then the quadratic can be factored as
(x − a)(x − b).
A root of a quadratic is also called a zero. Because, as we will see, at each root the value of the graph is 0.
Question 3.  How many roots has a quadratic?
Always two. Because a quadratic (with leading coefficient 1, at least) can always be factored as (x  a)(x  b), and a, bare the two roots.
In other words, when the leading coefficient is 1, the root has the opposite sign of the number in the factor. 
If (x
 + q) is a factor, then  x = −q  is a root.
q + q = 0.
Problem 1.   If a quadratic can be factored as (x + 3)(x − 1), then what are the two roots?
−3 or 1.
We say "or," because x can take only one value at a time.
Question 4.  What do we mean by a double root?
The two roots are equal. The factors will be (x  a)(x  a), so that the two roots are a, a.
For example, this quadratic
x² − 12x + 36
can be factored as
(x − 6)(x − 6).
If x = 6, then each factor will be 0, and therefore the quadratic will be 0.  6 is called a double root.
When will a quadratic have a double root?  When the quadratic is a perfect square trinomial.
Example 1.   Solve for x:   2x² + 9x − 5.
Solution.   That quadratic is factored as follows:
2x² + 9x − 5 = (2x − 1)(x + 5).

Now, it is easy to see that the second factor will be 0 when x = −5.
As for the value of x that will make
2x − 1
=
0,

 we must solve that little equation.

       We have:
2x
=
1

x
=
1
2
The solutions are:
x
=
1
2
 or  −5.
Problem 2.   How is it possible that the product of two factors ab = 0?
Either a = 0 or b = 0.
Solution by factoring
Problem 3.   Find the roots of each quadratic by factoring.
   a)  
x² − 3x + 2

b)  
x² + 7x + 12


(x − 1)(x − 2)

(x + 3)(x + 4)


x = 1  or  2.

x = −3  or  −4.
Again, we use the conjunction "or," because x takes on only one value at a time.
   c)  
x² + 3x − 10

d)  
x² − x − 30


(x + 5)(x − 2)

(x + 5)(x − 6)


x = −5  or  2.

x = −5  or  6.

   e)  
2x² + 7x + 3

f)  
3x² + x − 2


(2x + 1)(x + 3)

(3x − 2)(x + 1)


x = −
1
2
  or  −3.

x 
2
3
  or  −1.

   g)  
x² + 12x + 36

h)  
x² − 2x + 1


(x + 6)²

(x − 1)²


x = −6, −6.

x = 1, 1.


A double root.

A double root.
Example 2.   c  =  0.   Solve this quadratic equation:
ax² + bx  =  0
Solution.   Since there is no constant term -- c  =  0 --  x is a common factor:


x(ax + b)
  =  
0.


This implies:
x
  =  
0


or
x
  =  
b
a
.
Those are the two roots.
Problem 4.   Find the roots of each quadratic.
   a)  
x² − 5x

b)  
x² + x


x(x − 5)

x(x + 1)


x = 0  or  5.

x = 0  or  −1.

   c)  
3x² + 4x

d)  
2x² − x


x(3x + 4)

x(2x − 1)


x = 0  or  −
4
3

x = 0  or  ½
Example 3.   b  =  0.  Solve this quadratic equation:
ax² − c   =  0.
Solution.   In the case where there is no middle term, we can write:

ax²
=
c.

This implies:

x²
=
c
a

x
=
quadratic equations,  according to Lesson 26.
However, if the form is the difference of two squares --
x² − 16
-- then we can factor it as:
(x + 4)(x −4).
The roots are ±4.
In fact, if the quadratic is
x² − c,
then we could factor it as:
(x + quadratic equations)(x  algebra),
so that the roots are  ±algebra.
Problem 5.   Find the roots of each quadratic.
   a)  
x² − 3

b)  
x² − 25

c)  
x² − 10


x² = 3

(x + 5)(x − 5)

(x + algebra)(x  algebra)


x = ±algebra.

x = ±5.

x = ±algebra.
Example 4.   Solve this quadratic equation:
x²
 = 
x + 20.

Solution.   First, rewrite the equation in the standard form, bytransposing all the terms to the left:

x² − x − 20
 =
0

(x + 4)(x − 5)
 =
0

x
 =
−4  or  5.
And so an equation is solved when x is isolated on the left.
x = ±algebra is not a solution.
Problem 6.   Solve each equation for x.
   a)  
x²  =  5x − 6

b)  
x² + 12  =  8x


x² − 5x + 6 = 0


x² − 8x + 12 = 0


(x − 2)(x − 3) = 0

(x − 2)(x − 6) = 0


x = 2  or  3.

x = 2  or  6.

   c)  
3x² + x  = 10

d)  
2x²  =  x


3x² + x − 10 = 0


2x² − x = 0


(3x − 5)(x + 2) = 0

x(2x − 1) = 0


x = 5/3  or − 2.

x = 0  or  1/2.
Example 5.   Solve this equation
3 − 
5
2
x − 3x²
  =  
0
Solution.   We can put this equation in the standard form by changing all the signs on both sides.  0 will not change.  We have the standard form:
3x² + 
5
2
x − 3
  =  
0
Next, we can get rid of the fraction by multiplying both sides by 2.  Again, 0 will not change.
6x² + 5x − 6
=
0

(3x − 2)(2x + 3)
=
0.

The roots are 
2
3
 and −
3
2
.
Problem 7.   Solve for x.
   a)  
3 − 
11
 2
x − 5x² 
 =  0

b)  
4 + 
11
 3
x − 5x² 
 =  0

5x² +
11
 2
x − 3
 =  0

5x² − 
11
 3
x − 4
 =  0

10x² + 11x − 6
 =  0

15x² − 11x − 12
 =  0

(5x − 2 )(2x + 3)
 =  0

(3x − 4)(5x + 3 )
 =  0

The roots are 
2
5
 and −
3
2
.

The roots are 
4
3
 and −
3
5
.

   c)   
x² − x + 20
 = 0
d)    
x² + 3x + 18
 = 0


x² + x − 20
 = 0


x² − 3x − 18
 = 0


(x + 5)(x − 4)
 = 0.


(x − 6)(x + 3)
 = 0.


x −5  or  4.

x 6  or  −3.